Projects within the framework of open4innovation
There are 463 results.
IEA ES Task 41: Economics of Energy Storage
What is the value of energy storage and how can it be quantified? How can the benefits and value of energy storage be translated into promising business models? The Task will conduct a coordinated methodological assessment of the economic viability of energy storage (electrical, thermal, and chemical) in applications relevant to the energy system. This will be used to derive preferred conditions for energy storage configurations.
IEA ES Task 43: Storage for renewables and flexibility through standardized use of building mass
Thermal building mass activation uses building masses to condition interior spaces, but can also function as energy storage through targeted overheating/undercooling. This storage potential can be used for local and grid-connected renewable thermal and electrical energy (Power2Heat). The project develops new content on the construction, control and business models of such storages and disseminates it as guidelines, data and on the basis of best-practice objects that have been implemented.
IEA ES Task 44: Power-to-Heat and Heat integrated Carnot Batteries for Zero-Carbon (industrial) heat and Power supply
The rise of renewable energy causes fluctuating energy production. The electrification of heat supply further challenges the electricity grid. Coupling electricity and heating with thermal storage helps to strengthen grid resilience and ensures stable energy supply. This project identifies and evaluates heat-integrated Carnot battery concepts to store thermal and electrical energy and supply electricity and thermal energy on demand.
IEA ES Task 45: Accelerating the uptake of Large Thermal Energy Storages
The aim of Task 45 is to accelerate the market launch of large-scale heat storage systems. For this purpose, numerical simulation techniques and material measurement techniques are to be improved and a material database expanded. In addition, a standardized evaluation and communication basis will be developed leading to a method for yield assurance. The methods and findings will be disseminated specifically to municipal utilities, planners and operators of district heating systems as well as decision-makers.
IEA EV Task 52: EVs and Circularity
Electric vehicles have specific challenges to reach circularity, which must be identified and solved adequately. Circularity issues are relevant in all phases of the life cycle – production, use and end of life – so circularity is strongly linked to Life Cycle Assessment (LCA) of electric vehicles. Austria leads this task and is responsible for the scientific assessment of circularity in LCA. Relevant case studies for the Austrian industry are analysed and the national R&D demand is identified.
IEA Electric Vehicle Technology Collaboration Programme (EV-TCP)
The Technology Collaboration Programme on Electric Vehicles (EV TCP) vision is that the electric drivetrain will be used as the predominant transportation mode in a sustainable transport system that is preferably powered by renewable energy and does not produce harmful emissions.
IEA Energy Efficient End-use Equipment (4E)
The activities of IEA 4E TCP are carried out in four platforms and joint ExCo projects. The active Platforms are: Electric Motor Systems (EMSA), Sustainable Lighting and Controls (SSL), Efficient, Demand Flexible Networked Appliances (EDNA) and Power Electronic Conversion Technology (PECTA).
IEA Energy Storage (ES)
The aim of the IEA Energy Storage (ES) Technology Programme is to enable integrated research, development, implementation and integration of energy storage technologies in order to optimise the energy efficiency of all types of energy systems and to promote the use of renewable energy sources instead of fossil fuels.
IEA Experts Group "R&D Priority Setting and Evaluation" (EGRD). Working period 2020 - 2022
The IEA Experts Group (EGRD) was established by the Committee on Energy Research and Technology (CERT). It examines analytical approaches to energy technologies, policies, and research and development and evaluates the benefits of RTI policies. Its results and recommendations feed into IEA analysis, and enable a broad perspective of energy technology issues.
IEA Experts Group "R&D Priority Setting and Evaluation" (EGRD). Working period 2024 - 2026
The IEA Experts Group (EGRD) was established by the Committee on Energy Research and Technology (CERT). It examines analytical approaches to energy technologies, policies, and research and development and evaluates the benefits of RTI policies. Its results and recommendations feed into IEA analysis, and enable a broad perspective of energy technology issues.
IEA FBC Technology Collaboration Programme Fluidized Bed Conversion (Working Period 2024-2026): "IEA Green FBC"
The goal is to further expand and deepen the international cooperation of IEA fluidized bed technology both globally and nationally with regards to green technologies and to continue the successful course towards a most climate-friendly, sustainable and low-pollutant heat and power production using fluidized bed technology. All stakeholders are included and work closely together on a national and global level.
IEA Greenhouse Gas R&D Programme (IEA GHG TCP)
Founded in 1991, the remit of the GHG TCP is to evaluate options and assess the progress of carbon capture and storage, and other technologies that can reduce greenhouse gas emissions derived from the use of fossil fuels, biomass and waste. The aim of the TCP is to help accelerate energy technology innovation by ensuring that stakeholders from both the public and private sectors share knowledge, work collaboratively and pool resources to deliver integrated and cost-effective solutions.
IEA HEV TCP Task 49: Electric Vehicle-Fire Safety
As the number of electric vehicles increases, so does the need for safety. The project is creating an overview of fire safety standards for electric vehicles and networking relevant stakeholders. Challenges are discussed and experiences exchanged in national and international expert workshops. The focus is on promoting the safety of electric vehicles and increasing their acceptance.
IEA HEV Task 45: Electrified roads (E-roads)
Electric vehicles can be charged stationary as well as dynamically while driving on so-called "e-roads". From a systemic point of view, this technology can be an addition to stationary charging and is not competing. Internationally, the academic and political discussion in this field is progressing rapidly. Task 45 aims for a mutual knowledge exchange, a joint understanding of next steps and a contribution of the Austrian position into the international debate.
IEA HEV Task 46: LCA of Electric Trucks, Buses, Two-Wheelers and other Vehicles (Working period 2022 - 2025)
The objective of this R&D service is the participation in Task 46 of the IEA Hybrid and Electric Vehicle (HEV) TCP with the work on the internationally agreed topics and the managing of the task as Operating Agent. Beside the Life Cycle Assessment (LCA) studies of typical examples also methods for the assessment of climate neutrality and circularity are developed. This is done in dedicated expert workshops.
IEA HPT Annex 58: High-Temperature Heat Pumps
Industrial heat pumps, especially high temperature heat pumps with useful temperatures higher than 100°C, are a central element in the future energy system. In order to increase the application of high temperature heat pumps in industry, this project will provide an overview of the technological possibilities up to the procurement process of high temperature heat pumps. This should increase the understanding of the technology and its potential and reduce existing market barriers.
IEA HPT Annex 59: Heat Pumps for Drying Processes
Drying processes are highly energy-intensive and widespread in industry and commerce as well as in households in various forms. In this project, the potential for energy savings in drying processes in various applications will be investigated, which can be tapped through the use of heat pumps and made available to the relevant target groups in the form of guidelines, data, etc.
IEA HPT Annex 60: Retrofitting Heat Pump Systems in Large Non-domestic Buildings
Lack of knowledge about retrofit options with heat pumps currently hinders the widespread use of the technology in non-residential buildings. In this project, easy-to-use, accessible recommendations for techno-economically optimised planning / design of heat pump applications in hospitals, shopping centres, industrial buildings, educational institutions, and museums will be developed and communicated to relevant target groups in the form of guidelines and training courses.
IEA HPT Annex 61: Heat Pumps in Positive Energy Districts
IEA HPT Annex 61 evaluates the role of heat pumps (HP) in positive energy districts (PED). Efficiency potentials of the electric and thermal energy of districts that can be unlocked with the use of HPs are evaluated in order to reach a positive energy balance. This refers to both, upgrade of waste heat and simultaneous generation of different energy use in buildings (space heating, DHW, space cooling/dehumidification) and includes self-consumption of on-site renewable electricity generation.
IEA HPT Annex 63: Impact of heat pump placement on noise emissions
Noise emissions from heat pumps are a potential barrier for broad market diffusion of this energy efficiency technology, especially in urban areas. In this project, the influences of noise emissions in the building and in the neighbourhood are characterised, their psychoacoustic effects are analysed in more detail, and tools for digitally supporting heat pump placement are further developed. The results will be presented to relevant target groups in the form of guidelines and other documentation.