Projects within the framework of open4innovation
There are 69 results.
Thermal detection of cracks on glowing wire during the process of rolling with regard to reduction of rejections
Developing a non-destructive and fully automated testing to detect surface cracks and laps in rolled wires during the production at temperature values of 800-1000°C and at a material speed of 30-40 m/s, with regard to reduction of rejections.
UPTextIL - Upcycling cellulose from used textiles into high-strength filaments using spinning technology in ionic liquids
The aim of the project is to develop a process for spinning cellulose from used textiles using ionic liquids, to analyze potential impurities in this recycling material stream, and to develop strategies for their removal or avoidance during the spinning process. The project aims to lay the foundations for closing the material cycle of cellulose from used textiles.
V-Form – Manufacturing unreinforced vaulted concrete floors with variable pneumatic formworks
V-Form is working on the development of vaulted concrete floors in terms of structural design and building physics, as well as on a new formwork system. Thanks to the efficient shell construction, around 70% CO2eq-emissions can be saved compared to reinforced concrete flat slabs. The reusable and variable pneumatic formwork system aims to enable the economical production of the double-curved concrete shells.
Wastewater cycle. Cascadic recycling of wastewater and organic residue streams in buildings.
Basic research is being conducted for a sustainable cycle-oriented system for the building-integrated recycling of wastewater and food waste. This includes nutrient recovery for a sustainable circulation system (production of plant fertiliser and biochar), electricity production to meet the demand (up to 15 %) of plus-energy buildings, as well as water recovery for irrigation of the building's own or urban greenery and for summer cooling.
WattsOK? Robotics and AI Enabled Reuse of PV
WattsOK? optimizes reuse/recycle decisions for used photovoltaic (PV) modules via automation, incl. optical inspection-based decision-AI, electrical measurements, and robotic PV connector exchange for reuse. With this, the project addresses the expected increase in used PV modules. The project aims to enhance efficiency and effectiveness of reuse/recycling decision processes, extending the lifetime of modules through reuse, reducing waste, and promoting a circular economy within the photovoltaic sector.
Wood Plastic Composites - New property profile by refiner fibres
The mechanical properties and thus the application area of wood plastic composites with a wood content > 60 % shall be explicit increased by means of long wood fibres. The realization of a technological direct feeding system in extrusion process will enable an innovation jump of this wood like material.
circPLAST‐mr Mechanical Recycling of Plastics: Mechanisches Recycling von Kunststoffen: From waste plastics to high‐quality and specification‐compliant recyclates
The flagship project circPLAST‐mr pursues the following 4 main objectives: (1) to identify and explore previously unused potential for mechanical plastics recycling, (2) to define and test key process steps for this on a laboratory/pilot scale, (3) to demonstrate the eco‐efficient marketability of increased recycled plastic volumes, and (4) to demonstrate the scalability of the laboratory/pilot process steps to industrial scale.
fERNkornSAN – decarbonization and renovation with renewable materials of the "Gründerzeit"-building Fernkorngasse 41
Using the example "Gründerzeitgebäude" in Fernkorngasse 41, 1100 Vienna, technical challenges and issues related to phasing out gas and oil as well as adapting to climate change are investigated. A particular focus is placed on the use or resource-efficient and ecological building materials and highly efficient technologies. The results should be the basis for the use for further projects.
rPS4FoodPackaging - Polystyrene Recycling for food contact applications
The production of recycled plastics for food contact applications is challenging. Besides recycled polyethylene terephthalate (rPET) for beverage bottles, there are few alternatives in recycled plastics. This project focuses on researching a novel recycling process for polystyrene, aiming for approval of recycled polystyrene (rPS) for food contact applications.