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Abstract 
Increasing the number of Science, Technology, Engineering and Math (STEM) university graduates is 
considered a key element for long-term productivity and competitiveness in the global economy. Still, little 
is known about what actually drives and shapes students' choices. This paper focusses on secondary school 
students at the very top of the ability distribution and explores the effect of more exposure to science on 
enrolment and persistence in STEM degrees at the university and on the quality of the university attended. 
The paper overcomes the standard endogeneity problems by exploiting the different timing in the 
implementation of a reform that induced secondary schools in the UK to offer more science to high ability 
14 year-old children. Taking more science in secondary school increases the probability of enrolling in a 
STEM degree by 1.5 percentage point and the probability of graduating in these degrees by 3 percentage 
points. The results mask substantial gender heterogeneity: while girls are as willing as boys to take 
advanced science in secondary school - when offered -, the effect on STEM degrees is entirely driven by 
boys. Girls are induced to choose more challenging subjects, but still the most female-dominated ones. 
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1 Introduction

In the new heavily globalized and innovation driven economy, increasing the number of Science,
Technology, Engineering and Math (STEM)1 university graduates is found to generate high
social returns in terms of long-term productivity, growth and competitiveness [Winters, 2014,
Peri et al., 2013, Moretti, 2012, Atkinson and Mayo, 2010, Jones, 2002]. Moreover, a STEM
degree also represents a very profitable private investment for college graduates themselves.
Lifetime earnings of STEM graduates are extremely high [Joseph Altonji and Maurel, 1974,
Kirkeboen et al., 2016, Hastings et al., 2013, Pavan and Kinsler, 2015, Rendall and Rendall,
2014, Koedel and Tyhurst, 2010]: Altonji et al. [2012] show that nowadays intra-educational
income differences are comparable to inter-educational differences. In the US in 2009 the wage
gap between the average electrical engineer and someone with a degreee in general education
was almost identical to the wage gap between the average college graduate and the average
secondary school graduate. Moreover, graduates in STEM fields earn more independently of
the quality of the institution they attended [James et al., 1989, Kirkeboen et al., 2016, Arcidi-
acono et al., 2016]. Non-monetary returns are also high in STEM occupations: Goldin [2014]
classifies occupations based on their degree of temporal flexibility, i.e. how important it is to
stay long or particular hours in the office, and STEM occupations are ranked among the first.
However, despite the high social and private benefits obtained from graduating in STEM de-
grees, the general consensus among policy-makers is that the current supply of STEM skills is
insufficient and, when combined with the forecast growth in demand, it presents a potentially
significant constraint on future economic activity [UK HM Treasury and BIS, 2010, The Pres-
ident’s Council of Advisor on Science and Technology, 2012, European Commission, 2010].2

Despite the governments of many countries investing a very large amount of funds to induce
more graduates towards STEM [Atkinson and Mayo, 2010]3, the graduation rate or even the
level of interest of students in graduating in these degrees has remained pretty stable since the
’80s [Altonji et al., 2012]. While the literature on choices of the educational level is very wide
and consolidated (starting from the seminal work by Mincer [1974]), there is relatively little
work on choices of the field of study.

This paper evaluates how much of the lack in STEM graduates can be attributed to sec-
ondary schools, and in particular to the curriculum they offer. Ellison and Swanson [2012] show
that there is a large heterogeneity in secondary schools effectiveness in developing talents in
technical subjects like math, which is not explained by differences in schools composition. I
investigate the role of secondary school curriculum and I seek to understand whether more ex-
posure to science in secondary school for very high ability students increases by itself the supply
of STEM graduates. Moreover I explore whether changing the secondary school curriculum and
increasing students’ preparation in science shrinks the gender gap in STEM degrees enrollment.

The identification of the effect of studying more science in secondary school is difficult
because of a double selection problem: the selection of students into different schools -based on
the curriculum they offer- and that of students into different courses, within the school they
chose. I address and test both sources of endogeneity: I eliminate the selection in different
courses within the same school by collapsing the analysis at the school level (in the spirit

1Throughout the paper I define as ”STEM” the following degrees: Physical science, Mathematical and Com-
puter science and Engineering.

2Overall, STEM employment grew three times more than non-STEM employment over the last twelve years,
and it is expected to grow twice as fast by 2018. According to a report by the Information Technology and
Innovation Foundation [2010], the number of STEM graduates in the US will have to increase by 20-30% by 2016
to meet the projected growth of the economy.

3The US federal government for instance is considering actions with the objective of increasing STEM grad-
uates by 34% annually [The President’s Council of Advisor on Science and Technology, 2012].
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of Altonji [1995]) and I address the selection of students into different schools, by exploiting
exogenous variation in the timing of the introduction of an advanced science course in English
secondary schools. The UK government introduced in 2004 an entitlement to study advanced
science for high ability students at age 14, with the explicit aim of fostering enrollment in
post-secondary science education. This resulted in a strong increase in the number of schools
offering advanced science: from 20% in 2002 to 80% in 2011. As a consequence, the share of
students taking advanced science increased from 4% in 2002 to 20% in 2011 and the increase
was almost entirely concentrated on high ability students4 (see Figure 1). Thanks to a novel
dataset that I obtained by combining different administrative sources from England, I propose
two alternative identification strategies that approach this type of selection problem from two
complementary perspectives and I use different sources of variation. The first strategy uses
within-school variation in the type of courses offered over time and, in the spirit of Joensen and
Nielsen [2009], it exploits the three year time lag between the moment when students choose
their secondary school (age 11) and the moment when they choose their field courses (age 14). I
evaluate the effects on students unexpectedly exposed to the advanced science course, since their
schools started to offer it only after they chose the school. The second identification strategy
tests the robustness of my results by using across-school within-neighbourhood variation over
time: it exploits the fact that schools in England, when oversubscribed, select students based
on home-to-school distance and schools catchment areas vary (unpredictably) over time. My
second instrument therefore uses variation in whether the schools were offering advanced science
even before the students started to attend their school.

The empirical findings can be summarized as follows: taking advanced science at age 14
increases the probability of choosing science at age 16 by 5 percentage points and that of
enrolling in STEM degrees by about 2 percentage points. Moreover, offering more science
courses at secondary school does not only induce more students to enroll in STEM degrees but
it also increases the likelihood that they graduate in these degrees. This is important, given the
large problem with the persistence in this kind of degrees [Arcidiacono et al., 2016, Stinebrickner
and Stinebrickner, 2014].5

Second, I find that the effect on STEM degrees (in its narrow definition) is concentrated only on
boys: the gender gap in STEM degrees enrollment widens as a consequence of this policy. This
is not explained by the fact that less girls take advanced science at age 14 - boys and girls at
this stage select into advanced science in the same proportion - but because girls, when exposed
to more science in secondary school, even if induced to take more challenging subjects6, still
opt for the most female-dominated ones.
Taken together, my findings can inform ongoing debates over government intervention to address
apparent mismatches and market frictions in the supply and demand of post-secondary fields
of study. My results suggest that, to reinvigorate STEM education and high-skilled STEM
education in particular, governments should consider a policy aimed at offering more science
courses to high ability students during secondary schools. I estimate that the policy I consider
contributed to one third of the increase in the share of STEM graduates in England between
2005 and 2010.

This paper speaks to the growing literature that seeks to explain choices of university de-
grees. Most of the evidence so far comes from surveys or informational experiments and the
results are mixed. The most common explanations look at the role of expected earnings; com-

4I define high ability students as those who were in the top 30 percentile of the primary school grades
distribution. The increase for these students was around 35 percentage points, from 15% to about 50%.

5There is a problem of persistence in STEM majors also in England: in the cohort starting university in 2011,
out of the 17% of students enrolled in a STEM major, only 17% graduated in the same STEM major within
three years (this figure is 20% on average for the other majors).

6I define as challenging the subjects usually taken by students achieving very high grades in primary school.
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petencies and preparation; self-confidence; preferences and innate ability [Arcidiacono et al.,
2012, Arcidiacono, 2004, Beffy et al., 2012, Stinebrickner and Stinebrickner, 2014, M and Zafar,
2014]. However preferences and ability are usually considered to be constant over time, and
it is therefore difficult for policy-makers to shape them; returns to STEM degrees are already
very high, as stated before, and the elasticity of degree choice to expected earnings is found to
be rather low [Beffy et al., 2012]. Moreover, Stinebrickner and Stinebrickner [2014] show that
students start university being over-confident not under-confident about their scientific ability.
There is, instead, large scope for policies that interfere with students’ preparation and with the
primary and secondary schools quality. Many scholars [Cameron and Heckma, 2001, Moretti,
2012], indeed, attribute the lack of STEM graduates to the low quality of the US school system.
Some studies look at the effects of school inputs (usually at the university level), like peers
[De Giorgi et al., 2010, Anelli and Peri, 2015], teachers [Scott E. Carrell and West, 2010], teach-
ing structure [Machin and McNally, 2008] and university coursework [Fricke et al., 2015]. Still,
excluding some recent studies that evaluate the effects of secondary school curricula using quasi-
experimental evidence [Joensen and Nielsen, 2009, 2016, Cortes et al., 2015, Goodman, 2012],
there is little quantitative work on the effects of secondary school courses [Altonji et al., 2012].
This is surprising given that not only every single government has to take at some point the
decision about how to design its country secondary school curriculum but also, differently from
other policies like changes in peers, this is not a zero sum choice: everybody may potentially
benefit from a well designed curriculum.

My paper improves on the existing literature in several ways.7

First, I address both layers of selection of students into courses. Most studies [Altonji, 1995,
Levine and Zimmerman, 1995, Betts and Rose, 2004] use across school variation in the type of
curriculum offered and do not fully address the possible selection of students into schools, based
on the curriculum they offer. Since family background and individual motivation are important
determinants of both the choice of degrees and of the one of secondary schools, the bias in
estimates that do not take into account selection into schools could be important and could
lead to an overestimation of the effects. I show that, even in my context where the variation
in curriculum is induced by a policy, adding school-level controls is not enough to eliminate
selection bias: the inclusion of school fixed effects and the presence of an instrument turn out
to be crucial to correctly identify the effect of interest.

Second, the policy I consider allows me to identify the effect of offering more (natural)
science courses only, because it does not intervene on other subjects. Instead, changes in
secondary school curricula usually imply a restructuring of many different courses and it is
difficult to isolate the effect of one single subject [Altonji, 1995, Joensen and Nielsen, 2009,
2016, Gorlitz and Gravert, 2015, Jia, 2014]. While my treatment also has multiple components,
since taking advanced science also implies a change in classroom heterogeneity and composition,8

I disentangle the curriculum from the peer channel, using an instrument for peers that exploits
within-school variation over time in the ability of predicted peers, depending on whether the
school offers advanced science or not. I find that the effect of the advanced science course
persists even after controlling for changes in peers’ characteristics. This is key to identify the
exact origin of the effect and therefore to allow policy-makers to reproduce the policy in other
contexts.
Third, the compliers for my instrument are extremely high ability students: I therefore look
at the effect for those students with potentially very high probability of succeeding in STEM

7I mention here papers that look at the effect both on earnings and on degrees, even if most of the literature
looks at earnings without focusing on the effect on the choice of degree.

8Because the advanced science course provides the possibility of taking a course exclusively attended by other
very high ability students.
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degrees and of highest interest for policy-makers because they are more likely to make important
contributions to scientific and technological fields. On the one side this is important because
most of the existing empirical studies [Goodman, 2012, Cortes et al., 2015] analyze policies that
affect almost entirely low ability students, not likely to enroll at the university at all, or students
for whom taking science is rather costly [Joensen and Nielsen, 2009, 2016].9 On the other side,
it allows me to separately identify the effect on the extensive margin (i.e. the probability of
attending university) from the effect on the intensive margin (i.e. the choice of degree) because,
given that the students affected by the policy I consider would have enrolled at the university in
any case, the policy does not have any effect on the probability of continuing to study. Any effect
I find on the choice of degrees is therefore completely generated by changes on the intensive
margin. Moreover, the instrument affects boys and girls in a very similar way, therefore allowing
to test the gender heterogeneity of the effect without worrying about differences in compliance.

The remainder of this paper is organized as follows. In Section 2, I describe the data,
the English school system and the reform of the advanced science program in UK secondary
schools. Section 3 provides an overview of the main identification strategies. Section 4 presents
the estimated impact of advanced science on post-16 educational outcomes and it checks the
identifying assumptions and the robustness of the results. Section 5 inspects the mechanisms
behind the estimates and, finally, Section 6 concludes.

2 Data and institutional setting

2.1 The English school system

Compulsory education in England is organized in four Key Stages (KS). At the end of each
stage students are evaluated in standardized national exams. Figure 2 shows a timeline of the
English educational system. Pupils enter school at age 4, the Foundation Stage, then they
move to Key Stage 1 (KS1), spanning ages 5 and 6, and Key Stage 2 (KS2, from age 7 to age
11).10 At the end of KS2 children leave primary school and go to secondary school, where they
progress to Key Stage 3 (KS3, age 12-14) and Key Stage 4 (KS4, age 15-16). Admission to
secondary school is based on criteria usually set by the school or by the local council. Usually
schools give priority to children who live close to the school or whose brothers or sisters attend
the school already. At KS4 students start choosing some subjects.11 In particular, out of
usually between 10 and 12 qualifications, students typically choose between 4 and 6 subjects.12

At age 16 compulsory education ends and students may continue their secondary studies for
a further two years. This phase is called Key Stage 5 (age 17-18) and may take place in
the same secondary school (about 60% of the schools also offer KS5 courses) or in a different
school. Again, students have many different options: they can choose more vocational or more
academic-oriented type of qualifications (the so-called A levels), with slightly less than half of
each cohort undertaking at least one A-level exam at age 18. Students usually take three A
level or equivalent qualifications13, and are free to choose any subject. Finally, higher education

9These studies exploit for instance changes in minimum math requirements across US states over time or
compare students just below or just above the threshold for attending remedial classes in math and find modest
effects on earnings, concentrated on low-SES students. In my setting, instead, compliers include also extremely
high ability students, within the same school.

10KS1 corresponds to grade 1 and 2 in the US school system, KS2 to grades 3,4 and 5.
11A number of different qualification types are available to young people at KS4, varying in their level of

difficulty. These include: GCSE (the most common qualification in England and the most academic oriented), and
other more vocational qualifications. I will only consider GCSE qualifications or GCSE equivalent qualifications.

12The six compulsory subjects are: English, math, (single) science, information and communication, physical
education and citizenship. Students in general take overall between 10 and 12 qualifications.

1350% of students takes between 3 and 3.5 A level equivalent qualifications.
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usually begins at age 19 with a three-year bachelor’s degree. Admission to university is usually
based on which subjects were chosen at KS5 and on the grades achieved.

2.2 Science in secondary school

While science is a core component of the National Curriculum at KS4, there are several different
ways to fulfill the requirement. All students are required to study the basics elements of all
three natural sciences (physics, chemistry and biology) and should at least take the so-called
‘single science’ or core science course (which is worth one KS4 qualification). They can, more-
over, choose to take the ‘double science’ course (worth two qualifications) which leads to more
knowledge in all the three subjects or the ‘triple science’ course (which is called advanced science
and is equivalent to take one full qualification in each of the three natural science subjects).
Finally students can also take more vocational science qualifications. Taking triple science im-
plies both longer instruction time and the study of more complex science topics.14 Double
science and, more recently, triple science provide the standard routes into the fulfillment of KS4
requirements.

In 2004 the UK Government published a ten-year investment framework for science and
innovation [UK Government, 2004]. The framework set out the Government’s ambition for UK
science and innovation over the next decade and emphasized in particular the need for more
graduates in science. Taking triple science was considered extremely important, because “it gives
students the necessary preparation and confidence to go on and study science” (Confederation of
British Industry). The document established an entitlement to study triple science for students
achieving at least level 6 or above at KS3 science (the students on the top 40% of the grade
distribution).15 The result was a very large increase in the number of schools offering triple
science. While in 2002 less than 20% of schools offered triple science, by 2011 the share became
more than 80% (see Figure 1). Between 2002 and 2011 the share of students choosing triple
science increased from 4% to 20% and the increase was mostly concentrated among high ability
students (for whom the share increased from 15% to 50%).

There are several, mainly supply driven, reasons why the exact timing of the introduction of
the triple science option differs by schools. First, the lack of specialized teachers. 50% of science
and math students in English secondary schools are not taught by teachers specialized in the
subject. For teachers teaching outside their expertise, triple science is particularly demanding
and they need more time to get familiar with the material. Second, the school size: for small
schools it is difficult to offer a large number of subjects. With the ten-year investment frame-
work, the government encouraged new collaborative arrangements with other schools (to jointly
provide triple science). However, setting these agreements up takes time and many schools need
the support of their Local Education Authority (LEA) and the exact timing of the conclusion of
these agreements is uncertain. Finally, support and pressure on schools to fulfill the entitlement
to triple science was provided at the LEA level.16 Some LEAs were not as supportive as others
regarding the introduction of triple science: the increase in the share of schools offering triple
science was very heterogeneous across different LEAs.

14In this case students study more difficult topics such as electric current, transformers, some medical applica-
tion, more quantitative topics in chemistry etc.

15In particular the government stated that “all pupils achieving at least level 6 [Level 6 or above is equivalent
to the top 30% of students] at KS3 should be entitled to study triple science at KS4, for example through
collaborative arrangements with other schools.

16 LEAs organize courses both on how to organize the time schedule to fit the new curriculum and on the new
material covered and encourage school-to-school learning. There is large heterogeneity on how actively different
LEAs promoted and pushed the introduction of the Triple Science option in schools. In total there are 152 local
authorities in England.
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2.3 Data

By combining different administrative sources, my final dataset follows all students in main-
tained schools in the England,17 from primary school till the end of their university career.

I obtain information on students demographic characteristics from The Pupil Level An-
nual School Census (PLASC) that collects information on students’ gender, ethnicity, Free
School Meal Eligibility (FSM), Special Education Needs (SEN), language group as well as their
postcodes. The National Pupil Database (NPD) provides instead information on students’
attainments in all their Key Stages exams (from KS1 till KS5) as well as on every single sub-
ject chosen (and the corresponding grade) in KS4 and KS5 and on school characteristics (peer
groups, types of school, teachers’ hirings, schools location etc.). From the NPD dataset I obtain
also the information about which courses are offered by each school. In particular, I follow the
official methodology used by the English Department of Education and I infer that a school
offers a course if at least one pupil at the school took an assessment in that specific course and
year.18 I then link the NPD to the universe of UK university students, the Higher Education
Statistical Agency (HESA) dataset. The HESA dataset provides information on whether pupils
progress to university, on their degree, on the institution they attend and on whether they
graduate and in which degree. I combine these two data sources to create a dataset following
the entire population of five cohorts of English school children. My sample includes pupils who
finished compulsory education (took KS4 examinations, at age 16) between the academic years
2004/2005 and 2009/2010. After 2010, there would be no information on university outcomes,
because I only have data on university results till 2013. Before 2005, there is no information on
whether the school was offering triple science when the student applied to the school, because
the data collection starts in 2002 and there are three years of lag. Using information on the
secondary school attended by each individual, I match the individual record with school level
data on whether the school was offering triple science when the student applied and three years
later, when she had to choose her KS4 subjects.
Finally, I impose a set of standard restrictions on the data. First, I exclude special schools,
hospital schools, schools where there is a three tier system instead of a two tier system. Second,
I only use students who can be tracked from KS2 to KS4.19 This leaves me with approximately
530,000 students per cohort.

The data I use are a major improvement over previous studies. While the very detailed na-
ture of the information needed on subject choices gives particularly large scope for measurement
error problems in survey data, the students’ administrative dataset usually available in other
countries do not contain some of the elements necessary for this analysis. For instance, most
datasets do not have information on university outcomes and the few administrative datasets
that include post secondary school outcomes as well, refer to rather small countries, relatively
homogeneous in terms of students’ background and sometimes do not include information on
previous test scores. The large amount of observations and the heterogeneity in the students’
background available in the English dataset, provide me with enough power to accurately run
my analysis and to study the heterogeneity of the effect on subgroups of the population.

17The dataset refers only to England and it excludes private schools, that however educate a small share (7%)
of British children.

18My results are robust to different definitions (at least 5 pupils, at least 5% of the students, for at least two
consecutive years etc.) and all different definitions are extremely highly correlated.

19I checked whether this selection generates any bias (i.e. is correlated with the instrument) and this is not
the case. The results are available upon request.
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3 Empirical strategy

3.1 The selection problem

The main identification challenge when studying the effects of secondary school courses on post
secondary school outcomes, is to correct for selection bias.

To fix ideas, consider the case in which students choose between taking more science in
secondary school (D = 1) or not (D = 0). The observed choice of university degree (Y ) can be
linked to potential degrees (Yj where j = 1, 0) and the type of science in secondary school (D)
as:

Y = Y0 +D(Y1 − Y0) (1)

The OLS estimates of the effect of choosing more science in secondary school, can be written
as follows:

E(Y |D = 1)− E(Y |D = 0) = E(Y1|D = 1)− E(Y0|D = 0) (2)

The main challenge is that students selecting into certain secondary school courses would have
different potential outcomes in any case, meaning that a simple OLS does not provide the right
counterfactual (E(Y0|D = 0) 6= E(Y0|D = 1)). In practice there are two layers of selection:
selection of students into schools offering triple science and selection of students into triple
science, for a given school.
Let’s call S a dummy equal to 1 if the school attended by student i offers triple science and 0
otherwise. Then, the OLS estimates can be written as follows:

E(Y |D = 1)−E(Y |D = 0) = E(Y1 − Y0|D = 1, S = 1)︸ ︷︷ ︸
ATT

+

P (S = 1|D = 0) [E(Y0|D = 1, S = 1)− E(Y0|D = 0, S = 1)]︸ ︷︷ ︸
selection into courses

]+

P (S = 0|D = 0) [E(Y0|D = 1, S = 1)− E(Y0|D = 0, S = 0)]︸ ︷︷ ︸
selection into schools+courses

I address the selection problem by tackling the first and the second layer of selection in
two different ways. Selection of students into courses within the same schools is addressed
by collapsing the analysis at the school level, since I use instruments that vary only at the
school-cohort level. Most papers (in the spirit of Altonji [1995]) use school average curriculum
as instrument and therefore address this type of selection only. This leaves space, however, to
endogeneity due to selection of students into schools offering different curricula. I address this
other layer of selection in two different ways, that exploit two different types of variation.

3.2 First instrument

My first identification strategy is based on the following equation:

Yist = γ1Dist + γ2Xist + ζs + ζt + vist (3)

where Dist is the dummy equal to 1 if student i in secondary school s, in cohort t takes triple
science and 0 otherwise; Xist are school and student controls; δs are school fixed effects and
δt are year fixed effects. Yist is the outcome variable, usually a dummy indicating whether the
student takes science at KS5 or at the university (and 0 if she does not take science or does not
continue studying). Finally, vist is the error term.

The school fixed effects take care of time invariant school heterogeneity, such as the overall
quality of the school, of the students or of the neighbourhood. The time fixed effects absorb
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cohort effects or the presence of policies that uniformly affect the entire school system. Still,
there may exist time varying factors, changes in cohort quality in particular, that may bias
my estimates because this may be correlated both with the introduction of triple science in
a school and with the willingness to take science subjects. I therefore use as instrument for
Dist a dummy equal to one if student i in school s and cohort t was unexpectedly exposed
to the triple science option. I rely on the time span between the time when students choose
secondary schools (age 11) and the time when they choose their optional subjects (age 14). I
use as instrument a dummy equal to 1 if school s was not offering triple science when students
from cohort t applied to secondary schools but starts to offer triple science by the time they
choose their KS4 subject, three years later. I only include schools not offering triple science
when students applied. I compare two types of students, a priori identical because they all
selected schools not offering triple science at age 11: those whose schools unexpectedly started
to offer triple science by the time they turned 14 (my treatment group) and those whose school
did not offer triple science when they chose subjects at age 14 (my control group).20

This strategy mainly relies on two assumptions.
First, the assumption that the information set of both students in the treatment and in the
control group at age 11, when choosing their schools, is the same and does not include the
information on whether the school is going to offer triple science in the next three years. This is
very likely, given the large time lapse and uncertainty on when exactly teachers/classrooms and
time schedules would be ready. Moreover, students are not totally free to choose the school they
want: there are exogenous geographical constraints in choosing schools in England, especially if
schools are oversubscribed. In Section 4.3, I show that students who decided to enroll in schools
offering triple science are observationally identical to students who decided to enroll in schools
not offering triple science: there is no sign of strategic selection of schools based on whether
the schools offer the advanced science course, even if the information is available to parents and
students at age 11.
Second, the assumption that schools’ decisions on when exactly to start offering triple science
are related to supply-driven rather than demand-driven factors: schools must decide when to
start offering triple science not based on the quality of the current cohort attending the school.
In Section 2.2 I described some supply driven reasons why schools may delay the introduction
of triple science. In Section 4.3 I show that the timing of the introduction of the triple science
option is not correlated with (observable) characteristics of current students in the school and
that school s, before starting to offer triple science, was on the same trend of all other schools.

3.3 Second instrument

Still, even if there is no evidence that schools decide when to offer triple science depending on
observable characteristics of their current cohort, it may still be that unobservable characteristics
matter. This is impossible to test. My second instrument however is not subject to this
last concern because it exploits variation in available courses that existed even before current
students started to attend their secondary schools. This excludes the possibility that the choice
of offering triple science depends on specific shocks to the particular cohort in the school.
This instrument compares students living in the same neighbourhood but who are more or
less likely to enroll in schools offering triple science, because of exogenous changes in schools’
catchment areas.

20A similar idea, with only one year lag, has been used in Joensen and Nielsen [2009, 2016], to evaluate the
effects of increasing secondary school curriculum flexibility, that induced students to take more math at secondary
school in Denmark. I study a different policy that affects very high ability students and identifies the effect of
more science only. Thanks to the availability of data on previous test scores and of many cohorts, I am able to
use within school variation and to explore more in details the effect on choices of university degrees.
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I exploit the fact that when schools in England are oversubscribed, usually prioritize students
based on geographical distance.21 Therefore, in each year there will be a maximum distance
between the school and the students’ addresses above which students will not be accepted. I
build my instrument in two steps: first, I compute the school catchment areas for each year,
the area delimited by the circle whose centre is the school and ray is the maximum observed
home-to-school distance,22 and I define the set of ‘reachable’ schools for each student. Second,
I compute the share of ‘reachable’ schools that offered triple science when student i applied.
Figure 3 shows how the instrument is constructed. Student address refers to the lower level
output area (LLOA)23 where student i used to live at age 10. Around i’s house there are two
schools with different catchment areas, whose ray is indicated by the black dashed line. The
instrument used in this section of the analysis counts how many schools, out of the set of schools
reachable by students i in year t, offered triple science when i applied to secondary school (in
this case the instrument in year t− 1 was 1 and in year t was 0.5). The instrument varies both
because of (unpredictable) variations in schools catchment areas and because of the overall
increase in the number of schools offering triple science. I estimate the following equation:

Yipt = θ1Dipt + θ3Xipt + θt + θp + vipt (4)

where Dipt is the usual dummy indicating whether student i in year t, who used to live in
neighbourhood p when she was 10 year old, takes triple sciende and 0 otherwise; Xipt are
individual controls and θt and θp are cohort and neighbourhood fixed effects respectively; vipt
is the error term.

I then instrument Dipt using the share of schools reachable in year t, when i applied to
secondary school, by student i, residing in block p, that were offering triple science in year t (z2pt).
This instrument compares students attending schools that offer triple science with students
attending schools not offering it, i.e. it uses across school within neighbourhood variation
(instead of within school over time variation). Offering triple science is likely to be related to
other school characteristics, like school quality, that may directly affect the choices of degree at
the university. This issue may be more relevant when we use across school rather than within
school variation because differences in quality across schools are likely to be much more sizable
than differences within schools over time. Section 4.4 addresses this concern by including as
control the average quality level of the set ‘reachable’ schools in each catchment area over time.

4 Results

This section shows results obtained with the first instrument. I first show the overall effect of
taking more science in secondary school in term of post-16 outcomes (Subsection 4.1) and I
explore whether the effect is stronger for girls than for boys. Second, I describe who decides
to take triple science, when exposed to the option of taking it, by characterizing compliers
(Subsection 4.2) and, in particular, by analyzing whether boys are more likely than girls to
select triple science at age 14. Finally I check the identifying assumptions and whether the
main findings are robust to the second identification strategy (Subsections 4.3 and 4.4).

21With some exceptions for students with siblings attending the same school or for students with special
education needs. Since I do not have the full set of information necessary to simulate the exact admission
formula for each school, I can’t adopt an RDD strategy.

22In order to exclude exceptions I eliminated outliers (the distances higher than the 5th percentile for every
school.

23In total there are more than 30,000 LLOAs in England and Wales and each LLOA contains on average 1500
households.
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4.1 Main Results

Table 2 presents the main estimates of the effect of taking triple science at age 14 on the
probability of choosing at least one natural science subject at age 16 (KS5) and a STEM degree
at the university.24 The Table proceeds by estimating the effect of interest under different
specifications. Column 1 displays results from a simple OLS regression; in column 2 I add
school fixed effects; column 3 follows Altonji [1995] and uses as instrument for triple science the
share of students taking triple science in school s and year t; column 4 uses my first instrument
(zst) and some school time varying controls25, but does not include school fixed effects; column
5 shows results from my preferred specification that uses my instrument and exploits within
school over time variation only; finally column 6 adds a school-specific trend. Reassuringly, the
coefficients of columns 5 and 6 are very similar, suggesting that schools offering triple science are
on a similar trend. Column 7 estimates the specification of equation 3, but it eliminates controls
(Xist). The coefficients of columns 5 and 7 are again very similar, suggesting that -conditional
on my fixed effects- the instrument is quasi randomly assigned. As expected the bias in the
OLS estimates is upward: the coefficient indeed gets smaller as I correct for all different layers
of selection. The Table shows that, if a student strengthens her science preparation at age 14,
she is 5 percentage points more likely to take science at age 16 and 1.5 percentage points more
likely to choose a STEM degree at the university.

Table 3 shows the coefficients obtained from estimating equation 3 on other outcomes at age
14 (KS4), age 16 (KS5) and university. The top panel shows results on KS4 grades and on the
number of exams taken in KS4 and KS5. Since triple science is more difficult, taking it reduces
the average science grade at KS4. Columns 2 and 3 show that there are not spillovers on other
subjects’ grades. Columns 4 and 5 investigate whether the total number of qualifications taken
at age 14 and 16 changes, as a consequence of the new course offered. The results show that
the number of exams taken at age 14 slightly increases.
The second panel refers to outcomes at age 18, the results of KS5 exams. Column 1 shows that
the policy does not have any effect on the probability of continuing to study at age 16, probably
because the instrument mainly affects high ability students, who would continue to study in any
case. Since a change in the probability of enrolling in science subjects at age 16 may be driven
both by a change in the likelihood of continuing to study after age 16 and by a change in the
likelihood of choosing science subjects - conditional on continuing-, column 1 shows that the
coefficient estimated on KS5 subjects comes entirely from an increase in the second component,
because the first is not affected by the policy. The result displayed in column 2 shows that
the effect of studying triple science is not limited to the pure natural science subjects but it
has spillovers on math, for instance. The third panel refers to university outcomes. Column 1
shows again that the policy does not have any effect on the probability of continuing to study
at the university.26 The other columns show the effect on choice of degree and on the quality
of the institution attended. Students taking triple science are more likely to attend institutions
belonging to the Russell group.27 Moreover studying more science in secondary school also
increases the probability of graduating on time in STEM degrees.28 This is extremely relevant
given the large debate that is taking place in many countries, the US in particular, about

24The dependent variables in all cases are dummies equal to one if students attend a certain course and equal
to 0 if they do not attend those courses or do not continue studying.

25In particular, the share of girls attending school s in year t and the share of FSME (Free School Meal Eligible).
In the spirit of Joensen and Nielsen [2009, 2016].

26Note that even if the magnitude of the coefficient is similar to the other coefficients, the baseline in this case
in much larger: the average is 36% in this case.

27The Russell group represents 24 leading UK universities in terms of research and teaching.
28The results on university outcomes are estimated on students taking the final KS4 exam in the years 2005-2007

only, otherwise there is no information on whether the students graduated from university.
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the low persistence of students in scientific fields [Arcidiacono et al., 2016, Stinebrickner and
Stinebrickner, 2014].

Table 4 shows that the effect masks substantial gender heterogeneity29: while girls are
affected by the policy- for instance they are induced to take more medicine or biological sciences-
, the effect on pure STEM degrees is entirely driven by boys. Some studies claims girls may shy
away from STEM degrees because of fair for competition or lack of confidence about their ability
[Buser et al., 2014, Niederle and Vesterlund, 2010], suggesting that increasing preparation and
fostering scientific culture in secondary schools may shrink the gender gap in STEM degrees.
My results suggest instead that strengthening the science curriculum at age 14 is not helpful.
It may increase the share of girls taking science at age 14 and age 16, but it does not affect the
share of girls choosing STEM subjects at the university. This is in line with the findings of some
recent studies [Gemici and Wiswall, 2014, Zafar, 2013] showing that differences in preferences
are the main driver behind the gender gap in college degrees; and preferences are difficult to be
shaped by secondary school courses. My results are complementary to what is found in Joensen
and Nielsen [2016] for Denmark. Joensen and Nielsen [2016] estimate very positive effects both
for boys and for girls on the probability of choosing technical subjects at the university for
students taking advanced math in secondary school. A first reason behind the difference in our
results may be that they find a rather large effect on the probability of attending university
as well, given their instrument affects slightly lower ability students than in this case. Their
effect may therefore be the combination of changes in the pool of students attending university
and changes in the willingness to choose STEM subjects, conditional on going to university;
my effect instead comes exclusively from the second component. A second reason is related to
differences in the type of compliers. As also pointed out by Joensen and Nielsen [2016] and
extensively addressed for the regressions on earnings, the policy they analyze affects girls much
more than boys and compliers for the two groups of students are likely to be very different.
This makes the coefficients of the IV diffucult to compare across genders. As I will address
more extensively in Subsection 4.2, my instrument affects boys and girls in a very similar way.

Tables A4 and A5 explore moreover the extent and the presence of subjects complementarity
and substitutability. If one takes more science at age 14, which other (complement) subjects
is she more likely to take and, more importantly, from which (substitute) subjects does she
opt out? Table A3 in the Appendix shows the coefficients and standard errors obtained from
estimating equation 3 using each time a different KS4 subject as dependent variable. Tables
A4 and A5 report the same type of estimates but with respect to KS5 subjects and university
degrees, respectively. Students who take triple science at KS4 tend to drop more vocational
subjects, some foreign languages like German and some other core subjects like history. In
terms of KS5 courses, taking triple science induces students to choose more natural science
subjects and math later on, and to drop more vocational subjects, like media and accounting.
Finally, triple science increases the probability of choosing scientific subjects at the university,
like physics, engineering and medicine, but also non scientific but more challenging subjects, like
classical languages. It decreases, instead, the probability of enrolling in law and architecture.
The effect are different for boys and girls, especially for what concerns university degrees.

It is difficult to draw general conclusions from the coefficients of Tables A3, A4 and A5:
anecdotal evidence may suggest that a vocational course in music is very different from an
advanced course in science at age 14, but to evaluate each subject according to some objective

29As shown in Table A1 of the Appendix, there are other interesting source of heterogeneity. The group mostly
affected by the policy are the middle-high ability students. The very high ability students would probably be
very well prepared in any case and are less likely to be at the margin, the low ability students are instead less
likely to be affected by the policy at all. Moreover the effect on science at age 16 is slightly stronger for low SES
students, the effect on university outcomes is instead more difficult to estimate with enough precision for low
SES students because of the small share (20%) of low SES students attending university.
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criteria, Table 5 uses a more formal procedure. I define courses along two dimensions: (i) ‘high
achievers’ courses, characterized by a high average primary school grade of students choosing
them in out-of-sample academic years; (ii) ‘female dominated’ courses, characterized by a high
share of girls attending the courses in out-of-sample academic years (2002-2005). Figure 4
describes each subject, along these dimensions. In particular it shows three scatterplots where
for each course is displayed on the x-axis the share of girls usually enrolled in it and on the
y-axis the average primary school grade of student attending it. Triple science stands out as
the course at KS4 that is attended by the best students, followed by foreign languages, history
and geography. With respect to KS5 options, math is the most challenging course, followed
by physics, chemistry and foreign languages. For university degrees, medicine, languages and
STEM subjects are attended by very good students while education, subjects allied to medicine
and art are attended by the worst students on average. The correlation between the ability of
students usually attending each course and the share of girls enrolled in those courses is negative.
This is surprising, given that on average girls have higher grades than boys in primary school.
Table 5 shows whether students start choosing more ‘high achievers’ courses at age 18 (KS5) and
at the university as a consequence of taking more science at KS4.30 Taking advanced science
at age 14 induces students to choose more challenging subjects later on. Students taking triple
science are induced to choose at age 16 courses usually attended by students whose average
grade in primary school is about 0.2 standard deviations higher. The same is true for university
degrees, but the magnitude of the effect is smaller. Moreover, for KS5, I disentangle how
much of the reported increase is automatically due to the higher probability of choosing natural
science subjects and how much to the fact that students choose other (complement) more ‘high
achievers’ subjects, different from the three natural sciences. I find that the increase is partly
driven by an higher probability of choosing science courses (63%) and partly due to a higher
willingness to enroll in other difficult subjects not strictly in the natural science field (37%).31

The other columns look at the sample of boys and girls separately. The first row shows
that girls who take triple science are induced to choose more challenging subjects (i.e. more
‘high achievers’ subjects) in about the same proportion as boys, the second row shows that
they still opt for female-dominated subjects (like medicine for instance). This is an interesting
result: while at age 16 girls taking triple science still opt for more male-dominated subjects
(physics or math for instance - even if to a lower extent than for boys), strengthening the
science preparation in secondary school does not have any effect on the likelihood that girls opt
for STEM (male-dominated) subjects at the university. This suggests that once the subject
choice is actually related to the characteristics of their future jobs, girls still prefer the most
female-dominated degrees.

4.2 Compliers’ characterization

This Section analyses who decides to take triple science, when the school offers it. This helps
understand how students make decisions about which subject to take at age 14 and whether
the heterogeneity in the β1 coefficient, especially along the gender dimension, is actually driven
by differences in the treatment effect or by differences in compliance across genders. Even if
teachers in England usually make recommendations about which field courses to choose, the
actual choice of whether to take triple science or not is a free decision made by students.32

30To obtain these results I multiply the coefficients displayed in Tables A3, A4 and A5 by the numbers displayed
in Figure 4 and I sum the series. Standard errors are computed through the Delta method.

31This result is available upon request.
32One caveat should be considered when interpreting the results: sometimes supply of triple science is con-

strained since classes in England cannot be larger than 30. Since schools mainly prioritize based on previous
science and math scores, any differences in the probability of taking triple science based on previous test scores
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Pupils will choose to take triple science if their expected utility when D = 1 is higher
than their expected utility when D = 0. This may happen because triple science reduces their
costs (or their perception of the cost) of graduating in certain degrees or of graduating at all or
because triple science directly increases their productivity, and therefore wage. The contribution
in terms of utility of taking triple science with respect to the second best option, will not be
the same for all students: those already very good in science or with very strong preferences
towards other subjects may not find it as beneficial to take triple science.33 This means that
the likelihood of taking triple science will not be the same for everybody: it will depend on
preferences, on innate ability and on perceptions towards their ability.

The first row of Table 6 shows results from the first stage regression. Being unexpectedly
exposed to the offer of taking triple science increases students’ probability of enrolling in it by
15 percentage points. The F statistics is around 2800.
Table 6 then characterizes compliers for the entire population and for boys and girls separately
(columns 2 and 3, respectively). I obtain information on compliers’ characteristics looking at
the first stage for several subgroups of the population. For instance the ratio between the
instrument’s coefficient of the first stage estimated on the sample of females only (0.149) and
the coefficient of the first stage estimated on the entire sample (0.163) represents the relative
likelihood that a complier is female.34 The Table shows that compliers are more likely to
be very good students in primary school: the relative likelihood a complier is in the top 20th
percentile of test scores in primary school is more than two. Moreover compliers tend to be high
income students and, interestingly, there does not seem to be any particular gender difference
in compliance. The second and the third columns compare compliers for the subgroups of girls
and boys respectively and show that compliers’ characteristics are very similar between these
two groups.

4.3 Checks to the identification strategy

As stated in Section 3, the instrument used in the analysis relies on some assumptions.
First, the assumption that the information set of both the treatment and the control groups

of students at age 11 is the same and does not include the information on whether the schools
not offering triple science when students apply are going to offer it in three years. To check
this assumption I include all schools in the sample (both offering and not offering triple science
when student i applies) and I estimate the following equation:

Wist = α1z
11
st + α2zst + α3Xist + ξs + ξt + ηist (5)

where Wist are several outcomes (like the dummy for whether student i chooses a STEM
degree or whether he graduates in it) or pre-determined characteristics (like the average science
grade in secondary school, his gender etc); z11st is a dummy equal to 1 if school s attended by
student i in cohort t offered triple science when the student was 11 and chose her secondary
school and zst is my usual instrumental variable. In this way I test the extreme assumption
that, even when parents or students know the school is offering triple science when applying,
they do not select schools accordingly. Table 7 shows the results with (panel 1) and without
(panel 2) school specific trends. The coefficient α1 is not significant for most variables and in
any case is usually extremely small: students applying to schools already offering triple science

may not be driven by students’ willingness to take triple science, but by schools admission rules.
33Unless triple science has a positive effect also in reducing the cost of taking exams in other subjects, for

instance through changes in self confidence.
34First stages in this case do not include any control a part from year and school fixed effects. This does not

affect the effect of interest because controls are not correlated with the instrument.
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or not offering it appear very similar- at least in terms of observable characteristics. This is
consistent with the notion that students cannot freely choose their schools because schools,
when oversubscribed, have to select students based on geographical distance.

Second, the assumption that schools decide when to start offering triple science not based
on the quality of the current cohort attending the school and not because the school is already
on an increasing trend. Table 8 provides evidence that, when using my identification strategy,
the timing of the introduction of the triple science option is not correlated with (observable)
characteristics of current students in the school. The Table runs a set of placebo tests, where I
estimate the reduced form of equation 3 (without controlling for Xist) and where the dependent
variable is a pre-determined characteristic, the grade in the science course in primary school.
The triple science dummy (TS) in this case should not be significant, because the instrument
should not be correlated with the grade at KS2, unless my specification does not take full care of
selection. The Table has the same structure of Table 2 and it shows how different identification
strategies may fail to address selection. Column 1 shows results from a simple OLS regression,
column 2 adds school fixed effects, column 3 replicates the specification used by Altonji [1995]
and uses as instrument the share of students taking triple science in school s and year t, Column
4 uses my instrument but does not include schools fixed effects.35 Column 5 includes also school
fixed effects. Reassuringly, the effect in this case is 0. Finally column 6 adds school specific
time trends, and the coefficient is again 0. Table A2 in the Appendix shows results from a set
of other balancing tests obtained estimating the same specifications as in columns 5 and 6 for
a bunch of other predetermined observable characteristics. All balancing tests show that the
treatment is not correlated with observable characteristics of the current students in the school.

Moreover, I check for the presence of parallel trends. In particular, I check whether, before
school s started to offer triple science, the trend was parallel to that of all other schools still
not offering triple science. I augment my reduced form regression with leads and lags of the
instrument (following Autor [2003]):

yist =
m∑
t=0

γτ−tzs(τ−t) +

q∑
t=0

γτ+tzs(τ+t) + ζt + ζs + uist (6)

where zst is my instrument, τ is the year school s starts offering triple science, ζs and ζt are the
usual school and year fixed effects and uist is the error term. I then check for the presence of
parallel pre-treatment trends by evaluating whether all coefficients γτ−t are close to 0, for every
τ . Figure 5 shows that the trends are parallel before the introduction of the advanced science
course and there is a jump in the outcomes and in the treatment correspondingly exactly to the
year of the introduction of the new course.36 This confirms the results obtained in Table 7 and
8.

Another possible concern is that, once a school sets up all arrangements in terms of teaching
qualifications and staff in order to offer triple science, it may start to offer more science courses
at KS5 as well. In England about 60% of the schools offer both KS4 (age 14) and KS5 (age 16)
exams. This would imply that part of the effect I find may be purely mechanical: students take
more KS5 science courses because the set of options changes also at KS5. I address this concern
in Table 9. Columns 1 and 2 look at how the probability of offering science at KS5 evolves over
time and whether it corresponds exactly to the cohort when the school starts offering triple
science at KS4. The correlation is 0. Columns 3 and 4 look at whether the effect of studying
triple science on the probability of choosing science at KS5 is larger for schools offering both

35This column partly replicates, even if in a very different context, Joensen and Nielsen [2016]
36I also estimated the same graphs but using predetermined characteristics as dependent variables: in this case

there is no jump at year 0, nor at year -3, that correspond to the time when students know, when applying, that
the school offers triple science. These results are available upon request.
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KS4 and KS5 courses than for schools offering KS4 courses only. The effect is identical. If part
of the effect I find in my results was mechanical, it would be stronger for schools offering both
KS4 and KS5 exams.

Moreover, one may worry that taking triple science could potentially directly affect the
possibility of being admitted to STEM degrees at the university. However, while universities
often require some KS5 subjects in order to admit students to certain degrees, in no case they
require specific KS4 subjects. For instance, in 2013, a KS5 exam in math was required in 13%
of the cases (i.e. of degree-university combinations) and at least one KS5 exam in science was
required in 12% of the cases. In no case37, in 2013, there was a specific requirement for age 14
(KS4) subjects.

Finally, it may be that the simple fact of having the possibility of being enrolled in advanced
science but having been excluded, for example because the class was oversubscribed and schools
had to select students, may generate a direct effect on some students and may therefore violate
the exclusion restriction assumption. This is impossible to test. Table A6 however exploits
some of the institutional features of English school system to evaluate how problematic this
may be. Figure 6 plots the distribution of the size of triple science courses in each school. From
the Figure it is clear that class size bunches at multiples of 30. There is a discontinuity both
corresponding to 30 students and corresponding to 60 students. Since class size in England is
required to be lower than 30, this Figure suggests that in some cases the triple science course
was oversubscribed, and schools had to select students. Unfortunately the exact admission rule
is different for each school and is not publicly available. Table A6 exploits this feature of the
system and runs the main specification (using equation 3) on the sample of schools where the
triple science course was very likely not oversubscribed, because the number of enrolled students
was not close to the maximum.38 The results of this exercise are very similar to the main ones.

4.4 Second instrument

Table 10 shows the results obtained from my second identification strategy.39 The first three
columns refer to the probability of choosing a natural science subjects at Key Stage 5 (age 18),
the last three columns refer to the probability of attending a STEM degree at the university.40

The first and the forth columns do not include neighbourhood fixed effects, but control for the
lagged value of my instrument: they compare neighbourhoods which had the same share of
reachable schools offering the triple science course the previous year and they exploit variation
between t and t− 1. All other columns include neighbourhood fixed effects.

This instrument compares students living in the same neighbourhood but attending different
schools which offer or do not offer triple science. However, the probability of offering triple
science is likely to be related to other school characteristics, like school quality, that may
directly affect the choices of degrees at the university. Since the variation in school quality may
be much larger when using across school rather than within school over time variation, like
with the previous instrument, in Columns 3 and 6 I include the average quality of the set of
reachable schools in year t as a control. I proxy school quality using the school value added in
the out of sample years (2002-2005).

37Data are taken from http://www.thecompleteuniversityguide.co.uk/courses/search
38Those schools where the number of students enrolled in the triple science classes was not between 28 and 32

or between 58 and 62.
39 Since there is no information on postcode in primary school for students who finished secondary school in the

years before 2007, this section only refers to the years 2007-2010. For these cohorts, however, I have information
on whether they graduated only for the students who took KS4 exams in the year 2007, so I only analyze effects
on enrollment and on KS5 outcomes.

40The effect on the probability of attending university is 0, as for the previous instrument.
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The results confirm the robustness of the first identification strategy: the estimated effects
are positive and significant and the effects on STEM dergrees are stronger for boys than for
girls41. The estimates obtained through this strategy are however slightly larger, this may be
related to the different type of variation, and therefore of compliers, exploited. While compliers
for the first instrument are all individuals who take triple science because their school unexpect-
edly starts to offer it, which also include very good students who happened to be enrolled in
a school not offering triple science; compliers in the second instruments are students who take
triple science because, thanks to a larger supply of triple science in the set of reachable schools
in their neighbourhood, they manage to enroll in a school offering it. In this second case, very
good students would probably have enrolled in a school offering triple science in any case. This
suggests compliers for the second strategy exclude the extremely high ability students. Since,
as shown in Table A1 in the Appendix, those mostly affected by the policy are middle-high
ability students, this may explain the larger effect found in Table 10.

5 Alternative Mechanisms

This Section explores the mechanisms that may generate the effect found in Section 4 and
explores whether the effect obtained is actually generated by changes in curriculum or, since
the treatment has multiple components, it is also driven by changes in the peer composition of
the courses attended or in the type of teachers in the school.

5.1 Peers

First, I analyse the peers channel. In particular, I use the following measure of peer quality in
science (Qist) for student i, attending school s in year t who takes science courses Dist:

Qist = X
D
(−i)st (7)

where X
D
(−i)st is the average science grade in primary school of students taking age 14 science

course D42, in school s in year t (excluding i).
The first panel of Figure 7 shows how peers’ composition in the science course taken at age

14 changes for schools offering triple science or not. The dashed line plots the density of Qist in
the age 14 science course for students attending schools not offering triple science. The solid line
refers instead to schools offering triple science. The figure shows that when schools offer triple
science there is a concentration of very high ability students able to attend the science class
with peers of much higher quality than before. Column 1 of Table 11 confirms this finding: it
shows how peers’ quality in science courses changes after the school starts offering the advanced
science course, depending on students’ primary school grade in science. The quality of peers in
the science class decreases for lower ability students and increases quite extensively for higher
ability students.

To control for this dimension and check whether the effect found in Table 3 comes mostly
from changes in the peer composition or from changes in the curriculum, I control for peer
quality in equation 3. Since students self-select into different types of science course at age
14, peers’ quality may be endogenous. I therefore instrument peer quality by using within-
school over-time changes in peers’ composition (following Hoxby [2000]). In particular, I use
the fact that classes in England cannot be larger than 30 (as shown in Figure 6).43 I therefore

41results available upon request
42Since there is no information about the exact class but only about the type of science course, I use the average

grade in primary school of students taking the same course.
43While for primary schools this requirement is compulsory, it is just recommended for secondary school.
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predict, based on predetermined characteristics like previous test scores and demographics,44

the probability of being enrolled into triple science and I take the average science grade in
primary school of the 30 or 60 students (depending on the number of triple science classes
offered) with the highest probability of being enrolled into triple science. I then exploit within
school over time variation in the average quality of these students and of all other students in
school s and year t, allowing the effect to be different depending on whether the school offers
(unexpectedly) triple science or not. My first stage equation is:

Qist = θ1zst + θ2Q
t̂op30
st(−i) + θ3Q

ôthers
st(−i) + θ4Q

t̂op30
st(−i) ∗ zst + θ5Q

ôthers
st(−i) ∗ zst + θ5Xist + θs + θt + ηist (8)

where zst is the first instrument - the dummy equal to 1 student i was unexpectedly exposed

to the option of choosing triple science- Qt̂op30st(−i) is the average science grade in primary school

of the 30 (or 60) students with the highest predicted probability of being enrolled in triple

science and Qôthersst(−i) is the average science grade in primary school of all other students; θs and
θt are school and year fixed effects and ηistj is the error term. Panel b of Figure 7 shows how
the instrument works. The solid line refers to the average science grade in primary school for
students predicted to attend the triple science class, the dashed line refers to all other students.

Table 11 displays the results. Columns 2 to 6 show that the effect of triple science is very
similar to what found before, even after controlling for changes in peers’ quality. The joint F
statistic is 35.

5.2 Teachers

Unfortunately, it is not possible in England to link data on individual teachers to administrative
data on individual students. In this section I use the yearly number of teachers and of qualified
teachers in each school. Table A7 in the Appendix shows that neither the overall number of
teachers nor the number of qualified teachers in a school change significantly once the school
introduces the triple science option. This suggests that teachers’ quality and quantity do not
increase as a result of the introduction of the advanced science course.

6 Conclusions

This paper uses a reform that increased the probability of taking an advanced science course in
English secondary schools for students at the top of the ability distribution to analyze whether
secondary school curriculum affects post-16 outcomes, and in particular the probability of en-
rolling and graduating in a STEM degree. Moreover, by separately investigating the effect on
boys and girls, this paper seeks to understand whether strengthening school preparation in
science shrinks the gender gap in enrollment in STEM degrees.

Since the policy I consider affected very high ability students, who would have continued
studying in any case, I find that a stronger science curriculum in secondary school has no effect
on university enrollment. Still, my estimates suggest that offering more science in secondary
school improves educational outcomes in many domains. It induces students to attend higher
quality universities and significantly increases the probability of enrolling and, very importantly,
of graduating from university with a STEM degree. This effect masks a substantial and inter-
esting gender heterogeneity: at age 14 when exposed to the option of studying more science

44In particular, KS2 and KS3 science grades (both teacher assessed and from standardized exams) , gender,
Free School Meal Eligibility.
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in secondary school, there is no gender difference in the take-up probability. However, the dif-
ference arises later on, at the university, when subject choices are likely to be correlated with
occupations and jobs: both boys and girls are induced to take more challenging courses on aver-
age, but girls still choose more female-dominated subjects like medicine, instead of engineering
and math. This seems to be in line with the recent literature relating preferences towards job
attributes to choices of university degrees [Wiswall and Zafar, 2016, Reuben et al., 2015, Zafar,
2013] that shows that job characteristics play an important role in the choice of subjects at the
university, with women and men displaying very different preferences, even if at the very top of
the ability distribution.

My findings show that there is a certain degree of persistence between what is studied at
secondary school and what is studied at the university. An optimal design of the secondary
school curricula may be useful to improve the match between supply and demand of specific
skills.
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Figures

Figure 1: Take up in triple science
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Source: NPD dataset.The bars represent the share of schools offering triple science; the red dots
represent the share of high ability (based on English, math and science primary school grade, top 40
%) students taking triple science and the blue dots show the share of low ability (based on primary
school grades, bottom 60 %) students taking triple science, by year.

Figure 2: Timeline of the English educational system
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Figure 3: Second instrument
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Figure 4: Subject descriptives
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Source: NPD dataset. Subjects are described along two dimensions: the average primary school
grade (in English, math and science) of students taking the course in out of sample years and the
share of girls taking the course in out of sample years. The circles around each observation represent
the number of students attending these courses.
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Figure 5: Parallel Trends: Leads and Lags of the instrument
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Source: NPD dataset. The continuous line represent coefficients, the dashed lines the 5% confidence
intervals, obtained from estimating equation 6. Omitted category: one year before the treatment.
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Figure 6: Class size and number of students in triple science
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Source: NPD dataset. The dots are the number of schools, by triple science class size .
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Figure 7: Peers
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Source: NPD dataset. The first panel plots the distribution of science peers’ quality, distinguishing
whether the school offers triple science or not. The second panel plots the average peers quality for
students predicted to take the TS class and students not predicted to take the TS class.
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Tables

Table 1: Summary statistics

Variable Mean Std. Dev.

Key Stage 4
offer TS (unexpected) 0.196 0.397
1=Triple Sci 0.076 0.264
1=Double Sci 0.764 0.425
1=Single Sci 0.163 0.369

Key Stage 5
1=KS5 science (if KS5) 0.198 0.282
1=KS5 math (if KS5) 0.142 0.252

University
1=uni 0.348 0.470
1=STEMa 0.126 0.198
1=Russell 0.046 0.211
1=graduatea 0.481 0.361

Demographics
1=female 0.497 0.500
1=FSM eligibleb 0.144 0.356

The summary statistics reported in the Table refer
to the entire sample of students taking their final
KS4 exams (at age 16) between 2005 and 2010.

a Conditional on going to university.
b Free School Meal Eligible.
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Table 2: Results for science at age 17 and 19

OLS OLS-Fe Altonji IV IV-Fe IV-Fe tr IV-Fe
[1] [2] [3] [4] [5] [6] [7]

Dep var: 1=KS5 Science

1=TS 0.334*** 0.257*** 0.147*** 0.072*** 0.051*** 0.048*** 0.054***
(0.005) (0.005) (0.014) (0.010) (0.006) (0.008) (0.006)

1=female -0.009*** -0.004*** -0.011*** -0.010*** -0.010***
(0.001) (0.001) (0.001) (0.001) (0.001)

I sch gr sci 0.020*** 0.019*** 0.019*** 0.021*** 0.022***
(0.000) (0.001) (0.001) (0.001) (0.001)

N 1690451 1690451 1690451 1690451 1690451 1690451 1690451
Fstat 559372 2234 2065 1742 2066

Dep var: 1=STEM university

1=TS 0.104*** 0.072*** 0.039*** 0.024*** 0.014*** 0.012** 0.015***
(0.002) (0.002) (0.005) (0.004) (0.004) (0.006) (0.004)

1=female -0.034*** -0.034*** -0.035*** -0.034*** -0.034***
(0.001) (0.001) (0.001) (0.001) (0.001)

I sch gr sci 0.005*** 0.005*** 0.005*** 0.006*** 0.006***
(0.000) (0.000) (0.000) (0.000) (0.000)

N 1690451 1690451 1690451 1690451 1690451 1690451 1690451
Fstat 559372 2234 2065 1742 2066

School Fe No Yes No No Yes Yes Yes
School trends No No No No No Yes No
School contr No No Yes Yes No No No
Stud contr No Yes Yes Yes Yes Yes No

Additional controls: year and school fixed effects; student controls: gender, Free School Meal Eligible, Special
Education Needs, primary school grade in science, math and english; schools controls: school size. All
dependent variables are set equal to 0 if students do not continue studying or if they do not take the considered
subjects. Robust standard errors clustered by school in parentheses. * denotes significance at 10%, ** denotes
significance at 5%, *** denotes significance at 1%.
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Table 3: Results for other outcomes

[1] [2] [3] [4] [5]

Panel 1: KS4 (age 14) outcomes
Grades N. Exams

Dep var: KS4 Eng gra KS4 Math gra Ks4 science gr n exams ks4 n exams ks5c

1=TS 0.001 -0.026 -0.065** 0.438** -0.021
(0.031) (0.028) (0.027) (0.210) (0.022)

N 1332413 1339792 1690325 1690451 860615
ymean 0.022 0.021 0.000 10.303 3.416

Panel 2: KS5 (age 16) outcomes
Dep var: 1=KS 5 1=KS5 math 1=KS5 Bio 1=KS5 Che 1=KS5 Phy

1=TS -0.009 0.035*** 0.037*** 0.025*** 0.024***
(0.010) (0.005) (0.004) (0.003) (0.005)

N 1690451 1690451 1690451 1690451 1690451
ymean 0.509 0.056 0.040 0.026 0.065

Panel 3: University outcomesb

Dep var: 1=uni 1=grad 1=Russell 1=uni med 1=grad STEM

1=TS 0.044* 0.041 0.022* 0.013** 0.033***
(0.025) (0.025) (0.011) (0.007) (0.011)

N 966777 966777 966777 966777 966777
ymean 0.318 0.207 0.046 0.019 0.034

Additional controls: year and school fixed effects; student controls: gender, Free School Meal Eligible,
Special Education Needs, primary school grade in science, math and english; schools controls: school
size. All dependent variables are set equal to 0 if students do not continue studying or if they do not
take the considered subjects. Robust standard errors clustered by school in parentheses. * denotes
significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%.

a Grades go from 0 to 7, but are standardized to have mean 0 and standard deviation 1.
b The results on university outcomes use only the 2005-2008 sample because otherwise there will be no

information on the graduation outcomes.

Table 4: Gender Heterogeneity

Dep var: 1=KS5 sci 1=Russell 1=STEM 1=medicine 1=grad 1=grad STEM
[1] [2] [3] [4] [5] [6]

Girls
1=TS 0.047*** 0.027 0.003 0.023** 0.049 0.015

(0.008) (0.021) (0.015) (0.009) (0.040) (0.013)
N 849149 486068 486068 486068 486068 486068
ymean 0.080 0.053 0.020 0.030 0.239 0.019

Boys
1=TS 0.053*** 0.018 0.037** 0.005 0.033 0.045***

(0.007) (0.013) (0.017) (0.006) (0.029) (0.016)
N 841234 480646 480646 480646 480646 480646
ymean 0.088 0.040 0.054 0.008 0.174 0.049

Additional controls: year and school fixed effects; student controls: gender, Free School Meal Eligible,
Special Education Needs, primary school grade in science, math and English; schools controls: school
size. All dependent variables are set equal to 0 if students do not continue studying or if they do not
take the considered subjects. Robust standard errors clustered by school in parentheses. * denotes
significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%.
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Table 5: Summarizing effects on other subjects

∆ ks5 courses ∆ uni major

All Girls Boys All Girls Boys
High achievers 0.197*** 0.168*** 0.220*** 0.022*** 0.021** 0.028***

(0.019) (0.028) (0.023) (0.007) (0.011) (0.008)
Female-dominated -0.042*** -0.016 -0.058*** -0.007 0.014 -0.023**

(0.018) (0.027) (0.020) (0.008) (0.011) (0.010)

The coefficients are computed as
∑

j βjqj where j indicates subjects, βj is the subject specific
coefficient estimated in Tables A4 and A5 and qj is either ‘high achievers’(the average primary
school grade of taking the course j in out of sample academic years (2002-2005), standardized to
have mean 0 and standard deviation 1) or ‘female dominated’ (the share of girls attending course j
in out of sample academic years). Standard errors are computed through the delta method.
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Table 6: Characterizing compliers

Sample Everybody Only Girls Only Boys
[1] [2] [3]

Panel 1: Entire Sample
Zst 0.175*** 0.161*** 0.188***

(0.004) (0.005) (0.005)
N 1690451 849184 841267

Panel 2: Quintiles science grade in primary school
subgroup: 1st quintile av. primary school grade

Zst 0.009*** 0.008*** 0.009***
(0.001) (0.001) (0.001)

N 339951 174093 165858
Ratio wrt tot FS 0.051 0.050 0.048

subgroup: 2nd quintile av. primary school grade
Zst 0.038*** 0.035*** 0.041***

(0.001) (0.002) (0.002)
N 341063 171845 169218
Ratio wrt tot FS 0.217 0.217 0.218

subgroup: 3rd quintile av. primary school grade
Zst 0.099*** 0.092*** 0.105***

(0.003) (0.003) (0.004)
N 336767 168450 168317
Ratio wrt tot FS 0.566 0.571 0.559

subgroup: 4th quintile av. primary school grade
Zst 0.222*** 0.208*** 0.234***

(0.005) (0.006) (0.006)
N 344551 171725 172826
Ratio wrt tot FS 1.269 1.292 1.245

subgroup: 5th quintile av. primary school grade
Zst 0.449*** 0.417*** 0.479***

(0.009) (0.011) (0.010)
N 328119 163071 165048
Ratio wrt tot FS 2.566 2.590 2.548

Panel 3: Socio-Economic Status
subgroup: Low SES students (yes FSMa)

Zst 0.084*** 0.077*** 0.092***
(0.002) (0.003) (0.003)

N 223375 114446 108929
Ratio wrt tot FS 0.480 0.478 0.489

The Table reports results from the first stage for different subgroups of the
population. Dependent variable: a dummy equal to 1 if the student takes
triple science. Additional controls: year and school fixed effects. Robust
standard errors clustered by school in parentheses. * denotes significance at
10%, ** denotes significance at 5%, *** denotes significance at 1%.

a Free School Meal Eligible.
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Table 7: Selection

av KS2 gra sci KS2 grb 1=FSM 1=KS5 sci 1=uni 1=STEM 1=grad STEM
[1] [2] [3] [4] [5] [6] [7]

Without school specific trends
Z11
st -0.005 -0.008 0.002 0.005*** -0.002 0.001 0.001

(0.005) (0.006) (0.002) (0.001) (0.004) (0.002) (0.002)
N 2882341 2882341 2882341 2882341 1468169 1468169 1468169
School fe Yes Yes Yes Yes Yes Yes Yes
School trend No No No No No No No

With school specific trends

Z11
st 0.002 0.002 0.007** 0.004** -0.003 0.001 0.001

(0.006) (0.002) (0.003) (0.002) (0.005) (0.002) (0.002)
N 2285735 2285735 2285735 2285735 1309004 1309004 1309004
School fe Yes Yes Yes Yes Yes Yes Yes
School trend Yes Yes Yes Yes Yes Yes Yes

Additional controls years dummies, school fixed effects. Robust standard errors clustered by school in parentheses. The
dependent variables in column 4, 5 and 7 are set equal to 0 if students do not continue studying or if they do not take that
subject. * denotes significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%.

a average grade in English, math and science.
b grade in science.

Table 8: Balancing Test

OLS OLS-Fe Altonji IV IV-Fe IV-Fe tr
[1] [2] [3] [4] [5] [6]

Dep var: 1=Average Grade prim schoola

1=TS 0.927*** 0.788*** 0.802*** 0.363*** 0.042 0.045
(0.013) (0.015) (0.054) (0.052) (0.026) (0.034)

mfemale 0.232***
(0.053)

mfsm -1.545***
(0.051)

N 1337202 1337202 1337202 1337202 1337202 1337202

School Fe No Yes No No Yes Yes
School time trends No No No No No Yes

Additional controls: years dummies. Robust standard errors clustered by school in parentheses. *
denotes significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%.

a Average grade in the KS4 exams in English, math and science.
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Table 9: Robustness: offer KS5 Science

Sch level regr (offer) Stud in schools wo sixth form
Dep var: 1=Offer KS5 1=offer KS5 All schools only offer KS4

Science Math Dep var: 1=KS5 Science
[1] [2] [3] [4]

offertriple0 0.002 -0.000
(0.004) (0.004)

1=TS 0.050*** 0.053***
(0.006) (0.009)

N 5294 5294 1690451 751721
ymean 0.477 0.467 0.084 0.060

Column 1 and 2 are run at the school-year level. Columns 3 and 4 are run at the
student level. Additional controls: year and school fixed effects; student controls:
gender, Free School Meal Eligible, Special Education Needs, primary school grade in
science, math and English; schools controls: school size. The dependent variables in
columns 3, and 4 are set equal to 0 if students do not continue studying or if they do
not take the considered subjects. Robust standard errors clustered by school in
parentheses. * denotes significance at 10%, ** denotes significance at 5%, *** denotes
significance at 1%.

Table 10: Identification based on the second instrument

Dep. Var.: 1=KS5 Science 1=STEM major
[1] [2] [3] [4] [5] [6]

1=TP 0.111*** 0.120*** 0.108** 0.028*** 0.042 0.035
(0.013) (0.042) (0.043) (0.010) (0.054) (0.060)

% reach school off TSt−1 0.001 -0.002
(0.002) (0.002)

av. qual reach school 0.018** 0.010
(0.007) (0.007)

N 2847133 2850675 2850675 2392486 2395787 2392319
Neigh Fe No Yes Yes No Yes Yes

Additional controls: year fixed effects; student controls: gender, Free School Meal Eligible, Special
Education Needs, primary school grade in science, math and English. All dependent variables are set
equal to 0 if students do not continue studying or if they do not take the considered subjects. Robust
standard errors clustered by neighbourhood in parentheses. * denotes significance at 10%, ** denotes
significance at 5%, *** denotes significance at 1%.
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Table 11: Peers

Dep var: Qist
a 1=KS5 sci 1=Russell 1=STEM 1=medic 1=grad 1=grad STEM

[1] [2] [3] [4] [5] [6] [7]

Z offer*ks2 sci q1 -0.095***
(0.011)

Z offer*ks2 sci q2 -0.060***
(0.008)

Z offer*ks2 sci q3 -0.031***
(0.007)

Z offer*ks2 sci q4 0.024***
(0.007)

Z offer*ks2 sci q5 0.055***
(0.007)

Z offer*ks2 sci q6 0.099***
(0.008)

1=TS 0.053*** 0.022** 0.024** 0.013* 0.042* 0.034***
(0.006) (0.011) (0.012) (0.008) (0.025) (0.011)

qual peer (std) 0.021*** 0.018*** 0.003 -0.001 0.014 0.004
(0.005) (0.004) (0.004) (0.003) (0.009) (0.004)

N 1648926 1621765 935630 935630 935630 935630 935630

Additional controls: year and school fixed effects; student controls: gender, Free School Meal Eligible, Special Education
Needs, primary school grade in science, math and english; schools controls: school size. All dependent variables are set
equal to 0 if students do not continue studying or if they do not take the considered subjects. Gr sci refers to sixtiles of
the grade distribution in the science exam at the end of primary school (KS2). F statistic: 35.

a quality (based on science grade in ks2 (age 11) of peers in the same science class. Robust standard errors clustered by
school in parentheses. * denotes significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%.
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7 Appendix

Table A1: Heterogeneity

Dep var: 1=KS5 sci 1=Russell 1=STEM 1=medicine 1=grad 1=grad STEM
[1] [2] [3] [4] [5] [6]

Panel 1: Quintiles science grade in primary school
3rd quintile

1=TS 0.019 -0.002 -0.002 0.015 0.036 0.032
(0.015) (0.035) (0.037) (0.028) (0.089) (0.036)

N 336723 203148 203148 203148 203148 203148
ymean 0.045 0.024 0.026 0.017 0.188 0.023

4th quintile
1=TS 0.032*** 0.041* 0.076*** 0.017 0.084* 0.086***

(0.010) (0.021) (0.021) (0.014) (0.046) (0.019)
N 344500 197276 197276 197276 197276 197276
ymean 0.104 0.053 0.045 0.024 0.277 0.042

5th quintile
1=TS 0.053*** 0.018 0.010 0.005 0.016 0.012

(0.007) (0.016) (0.015) (0.008) (0.023) (0.015)
N 328076 181689 181689 181689 181689 181689
ymean 0.254 0.146 0.097 0.040 0.414 0.090

Panel 2: Socio-Economics Status
High SES students (no FSM)

1=TS 0.048*** 0.024** 0.020 0.015* 0.037 0.033***
(0.006) (0.011) (0.013) (0.008) (0.026) (0.012)

N 1431595 818880 818880 818880 818880 818880
ymean 0.093 0.052 0.041 0.020 0.226 0.037

Low SES students (yes FSM)
1=TS 0.063*** -0.008 0.042 -0.003 0.100 0.024

(0.018) (0.044) (0.039) (0.035) (0.090) (0.036)
N 258804 147854 147854 147854 147854 147854
ymean 0.034 0.015 0.018 0.010 0.103 0.016

Additional controls: year and school fixed effects; student controls: gender, Free School Meal Eligible,
Special Education Needs, primary school grade in science, math and English; schools controls: school
size. All dependent variables are set equal to 0 if students do not continue studying or if they do not
take the considered subjects. Robust standard errors clustered by school in parentheses. * denotes
significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%.
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Table A2: Other balancing tests

RF RF IV IV
[1] [2] [3] [4]

Dep var: 1=Grade English prim school

Zst -0.000 0.005
(0.004) (0.005)

1=TS -0.001 -0.002
(0.023) (0.023)

N 1690451 1690451 1690451 1690451
ymean 0.015 0.015 0.015 0.015

Dep var: 1=female

Zst -0.002 -0.001
(0.001) (0.002)

1=TS -0.009 -0.009
(0.009) (0.009)

N 1690451 1690451 1690451 1690451
ymean 0.502 0.502 0.502 0.502

Dep var: 1=FSM

Zst -0.000 -0.000
(0.001) (0.002)

1=TS -0.001 -0.001
(0.008) (0.008)

N 1690451 1690451 1690451 1690451
ymean 0.153 0.153 0.153 0.153

School Fe Yes Yes Yes Yes
School trend No Yes No Yes

Additional controls years dummies. All dependent variables are
set equal to 0 if students do not continue studying or if they do
not take that subject. Robust standard errors clustered by
school in parentheses. * denotes significance at 10%, ** denotes
significance at 5%, *** denotes significance at 1%.
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Table A3: Effect on other KS4 subjects (age 14)

Dep. var All Girls Boys
[1] [2] [3] [4] [5] [6]

Coeff. Se Coeff. Se Coeff. Se

English lit 0.068** (0.030) 0.075** (0.030) 0.061* (0.032)

Statistics 0.011 (0.034) 0.010 (0.038) 0.011 (0.034)

DT food -0.027* (0.016) -0.047** (0.024) -0.009 (0.013)

DT graphics -0.015 (0.014) -0.002 (0.017) -0.027 (0.017)

DT material -0.014 (0.014) 0.000 (0.011) -0.024 (0.022)

Art design -0.008 (0.019) 0.001 (0.025) -0.015 (0.019)

History -0.032* (0.019) -0.045* (0.023) -0.022 (0.021)

Geogr 0.007 (0.020) 0.010 (0.024) 0.005 (0.022)

French -0.015 (0.028) -0.010 (0.033) -0.020 (0.027)

German -0.065*** (0.018) -0.072*** (0.022) -0.060*** (0.018)

Business -0.012 (0.019) -0.012 (0.020) -0.014 (0.021)

Drama 0.007 (0.014) -0.001 (0.020) 0.013 (0.014)

Inf tech -0.034 (0.031) -0.020 (0.032) -0.048 (0.035)

Music -0.001 (0.008) -0.012 (0.011) 0.009 (0.010)

Media -0.012 (0.022) -0.016 (0.025) -0.009 (0.023)

Fine art 0.005 (0.014) 0.007 (0.019) 0.004 (0.013)

Office technology 0.016 (0.028) 0.008 (0.032) 0.022 (0.028)

Applied buss -0.001 (0.014) -0.004 (0.015) 0.000 (0.015)

Health care 0.003 (0.011) 0.009 (0.022) -0.002 (0.004)

Applied IT -0.009 (0.021) -0.009 (0.021) -0.008 (0.024)

Each line represents a different regression. Columns 1, 3 and 5 display the coefficients on the
independent variable 1 = TS. All dependent variables are set equal to 0 if students do not take
that subject. Usual controls. Robust standard errors clustered at the school level. * denotes
significance at 10%, ** denotes significance at 5%, *** denotes significance at 1%. I exclude
math and English because compulsory in KS4.
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Table A4: Effect on other KS5 subjects (age 16)

Dep. var All Girls Boys
Coeff. Se Coeff. Se Coeff. Se

Biology 0.035*** (0.005) 0.037*** (0.008) 0.034*** (0.006)

Chemistry 0.037*** (0.004) 0.032*** (0.006) 0.040*** (0.005)

Physics 0.025*** (0.003) 0.012*** (0.003) 0.036*** (0.005)

Math 0.024*** (0.005) 0.016** (0.007) 0.031*** (0.007)

AD textile -0.003* (0.002) -0.005 (0.003) -0.001* (0.000)

History 0.005 (0.005) 0.004 (0.008) 0.005 (0.006)

Economics 0.003 (0.003) 0.002 (0.003) 0.004 (0.005)

Law -0.007** (0.003) -0.007 (0.005) -0.008** (0.004)

Psychology -0.010* (0.006) -0.015 (0.011) -0.006 (0.005)

Media film tv -0.012*** (0.005) -0.013* (0.007) -0.011** (0.005)

German -0.003** (0.001) -0.002 (0.002) -0.003** (0.001)

Music tech -0.004*** (0.001) -0.001 (0.001) -0.008*** (0.002)

Accounting -0.002* (0.001) -0.002 (0.002) -0.002 (0.002)

Each line represents a different regression. Columns 1, 3 and 5 display the coefficients on
the independent variable 1 = TS. All dependent variables are set equal to 0 if students do
not continue studying or if they do not take that subject. Usual controls. Robust standard
errors clustered at the school level. * denotes significance at 10%, ** denotes significance
at 5%, *** denotes significance at 1%.
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Table A5: Effect on other university majors (age 18)

Dep. variables All Girls Boys
Coeff. Se Coeff. Se Coeff. Se

Physics 0.006*** (0.002) 0.001 (0.003) 0.009*** (0.003)

Math 0.001 (0.002) -0.002 (0.002) 0.003 (0.004)

Engineering 0.007*** (0.002) 0.003** (0.001) 0.011*** (0.003)

Biology -0.001 (0.003) -0.001 (0.005) -0.002 (0.004)

Veterinary agric -0.001 (0.001) -0.001 (0.002) 0.000 (0.001)

Computer sci -0.001 (0.001) -0.001 (0.001) -0.000 (0.002)

Technology -0.000 (0.001) -0.000 (0.001) -0.000 (0.001)

General science -0.000 (0.001) -0.001 (0.002) 0.000 (0.001)

Medicine 0.003* (0.001) 0.006** (0.002) 0.001 (0.001)

Allied medicine 0.004* (0.002) 0.008* (0.004) 0.000 (0.002)

Architecture -0.003*** (0.001) -0.002* (0.001) -0.004** (0.002)

Other languages 0.000 (0.000) -0.000 (0.001) 0.000 (0.001)

History 0.001 (0.002) 0.003 (0.003) -0.001 (0.002)

Art design -0.000 (0.003) 0.001 (0.005) -0.002 (0.003)

Education -0.001 (0.002) -0.001 (0.004) -0.001 (0.001)

Soc studies 0.003 (0.003) 0.005 (0.005) 0.001 (0.003)

Law -0.004* (0.002) -0.006* (0.003) -0.002 (0.002)

Business 0.001 (0.003) 0.001 (0.004) -0.000 (0.004)

Communication 0.000 (0.002) 0.001 (0.003) -0.001 (0.002)

Ling classic 0.005** (0.002) 0.004 (0.004) 0.006*** (0.002)

Eu languages -0.000 (0.001) -0.000 (0.002) -0.000 (0.001)

Each line represents a different regression. Columns 1, 3 and 5 display the coefficients on
the independent variable 1 = TS. All dependent variables are set equal to 0 if students do
not continue studying or if they do not take that subject. Usual controls. Robust standard
errors clustered at the school level. * denotes significance at 10%, ** denotes significance at
5%, *** denotes significance at 1%.

41



Table A6: Robustness: exclusion restriction

Dep var: 1=KS5 sci 1=Russell 1=STEM 1=medicine 1=grad 1=grad STEM
[1] [2] [3] [4] [5] [6]

1=TS 0.057*** 0.024* 0.022 0.010 0.039 0.026**
(0.007) (0.014) (0.013) (0.009) (0.028) (0.012)

N 1613226 948058 948058 948058 948058 948058
ymean

The sample includes only schools where the triple science class is not likely to be oversubscribed (class
size not around a multiple of 30). Additional controls: year and school fixed effects; student controls:
gender, Free School Meal Eligible, Special Education Needs, primary school grade in science, math and
English; schools controls: school size. The dependent variables in columns 3, 4, 5 and 6 are set equal
to 0 if students do not continue studying or if they do not take the considered subjects. Robust
standard errors clustered by school in parentheses. * denotes significance at 10%, ** denotes
significance at 5%, *** denotes significance at 1%.

Table A7: Teachers

Dep. variable: N teachers N qualified
teachers

[1] [2]

1=TS 1.604 1.577
(1.267) (1.249)

N 1022489 1022489
ymean 70.567 66.654

Additional controls: year and school fixed
effects; student controls: gender, Free School
Meal Eligible, Special Education Needs,
primary school grade in science, math and
english; schools controls: school size. Robust
standard errors clustered by school in
parentheses. * denotes significance at 10%, **
denotes significance at 5%, *** denotes
significance at 1%.
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